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Algal Genomics: Exploring the
Imprint of Endosymbiosis

The nuclear genomes of photosynthetic eukaryotes are littered with
genes derived from the cyanobacterial progenitor of modern-day
plastids. A genomic analysis of Cyanophora paradoxa — a deeply
diverged unicellular alga — suggests that the abundance and functional
diversity of nucleus-encoded genes of cyanobacterial origin differs in
plants and algae.
John M. Archibald

In the billion odd years since their
cyanobacterial predecessors first
inhabited the cytoplasm of a
non-photosynthetic eukaryote [1],
the plastids (chloroplasts) of plants
and algae have been radically
transformed. The bulk of this
transformation has come in the
form of genomic ‘downsizing’ —
the elimination of superfluous
genes and the transfer of essential
genes to the host nuclear genome.
As reported recently in Current
Biology, Reyes-Prieto et al. [2] have
estimated the cyanobacterial
contribution to the nuclear genome
of the ‘coelacanth’ of the algal
world, the freshwater unicell
Cyanophora paradoxa. They
conclude that, in contrast to what is
seen in the genome of the land
plant Arabidopsis [3], the
Cyanophora genome harbors
a modest set of cyanobacteria-
derived genes, the functions of
which appear tightly linked to the
plastid. Diverse plants and algae
seem to differ in the extent to which
they have taken advantage of the
cyanobacterial gene pool present
in their common ancestor.

The fate of cyanobacterial genes
in photosynthetic eukaryotes has
been debated for more than 20
years. Long before the era of
genome sequencing, Weeden [4]
proposed that plant nuclei must
possess large numbers of genes
derived from cyanobacteria. He
based this proposition on the fact
that plastid genomes are small and
cannot possibly encode all the
proteins necessary for plastid
function. Weeden’s insight was
spot-on: plastid genomes are
indeed extremely limited in their
coding potential (rarely >200
protein genes [5]; Figure 1) and, as
predicted, plant nuclear genomes
harbor thousands of
cyanobacterial genes whose
proteins are synthesized in the
cytoplasm and targeted back to the
plastid [6–8]. The reality is even
more complex than Weeden could
have imagined. We now know that,
in addition to producing proteins
that service their compartment of
origin, nucleus-encoded
cyanobacterial genes have the
potential to acquire all manner of
functions in plant and algal cells
(Figure 1).

The full extent to which the
function of cyanobacterial genes
can be uncoupled from their
prokaryotic ancestry was revealed
in 2002. Building on earlier studies
indicating that, in plants, metabolic
pathways are often cobbled
together from enzymes with
diverse evolutionary histories
(reviewed in [9]), Martin et al. [3]
scrutinized the complete sequence
of the Arabidopsis nuclear genome
[10] with the goal of answering the
following questions: How many
cyanobacterial proteins does it
encode? And of these, how many
are plastid-targeted? The answer
was unexpected: of the 24,990
analyzed Arabidopsis proteins,
a whopping 18% (4,500 in total)
were inferred to have come from
cyanobacteria — as many or more
than the number of proteins
encoded in most cyanobacterial
genomes [3]. Even more surprising
was the fact that the predicted
functions of >50% of the
analyzable proteins have nothing
to do with the plastid or
photosynthesis, and fall into a wide
range of functional categories,
including metabolism, cell division
and intracellular transport [3]. The
cyanobacterial contribution to the
nuclear genome of Arabidopsis
appears to extend well beyond the
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Figure 1. Endosymbiotic origin of plastids.

(A) Primary endosymbiosis between a non-photosynthetic eukaryote and a cyanobac-
terium, with the predicted number of cyanobacterial genes based on the completely
sequenced genomes of modern-day species. (B) Schematic diagram of a primary plas-
tid-containing cell. The number of plastid genes is based on the gene content of
sequenced red, green and glaucophyte plastid genomes. Arrows show the known or
predicted flow of genes and proteins. Gene transfers involving the mitochondrion
are omitted for simplicity, as is the targeting of non-cyanobacterial proteins to the plas-
tid and other cellular compartments. Abbreviations: Nu, nucleus; Mt, mitochondrion;
Cy, cytoplasm; SP, secretory pathway.
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provision of essential genes for
plastid function (Figure 1). Is this
true of other plants and algae?

In order to grasp the significance
of this question it is important to
recognize that despite their current
terrestrial dominance, land plants
(or embryophytes) had a humble
beginning. They are essentially the
multicellular cousins of unicellular
green algae [11], and an
increasingly robust body of
evidence indicates that all
plastids — including those of land
plants — can be traced back
(directly or indirectly) to a single
‘primary’ endosymbiosis that
occurred in the common ancestor
of green algae, red algae and an
enigmatic unicellular lineage
called glaucophytes ([1,12] and
references therein). From this
perspective, one wonders how
much of the creative usage of
cyanobacterial genes in
Arabidopsis occurred relatively
recently during the evolution of
land plants, and how much of it
happened earlier, in the common
ancestor they share with green, red
and glaucophyte algae?

Reyes-Prieto et al. [2] set out to
answer this question by surveying
the nuclear genome of the
glaucophyte Cyanophora
paradoxa (Figure 2). Glaucophyte
plastids (or cyanelles) bear a
striking resemblance to free-living
cyanobacteria — they were once
assigned their own genus and
species [13] — and have several
cyanobacterial features that are
absent in canonical plastids, most
notably a peptidoglycan layer
between their two cell membranes
[13,14]. While molecular data

Figure 2. Light micrograph of Cyano-
phora.

Image by D. Patterson, provided with per-
mission by http://microscope.mbl.edu.
indicate that the Cyanophora
plastid is not quite the ‘missing link’
its morphology would suggest —
its genome is similar in size and
coding capacity to those of other
plastids [15,16] — the
glaucophytes do appear to be the
earliest diverging of the three
primary plastid-containing
lineages [3,16]. Cyanophora is
therefore as evolutionarily distant
from Arabidopsis as any
photosynthetic eukaryote known
and thus an important lineage in
which to test the extent of ancient
cyanobacterial gene recruitment.

From a dataset of 11,176
Cyanophora expressed sequence
tags (ESTs), Reyes-Prieto et al. [2]
identified 3,576 unique genes and
1,226 of these produced significant
database hits to known or
conserved proteins. Consideration
of the functional distribution of
these genes revealed no obvious
sampling bias, and the authors
conclude that their dataset is
a random sample corresponding to
24–30% of the Cyanophora
genome [2]. To search for
cyanobacterial genes in their ESTs,
a two-tiered ‘similarity’ and
‘phylogenomic’ search strategy
was employed, yielding a set of 132
proteins of putative cyanobacterial
origin. This corresponds to 3.7%
of analyzable genes and w10.8%
of the 1,226 genes with clear
homologs in other organisms. In
other words, w1,500 of the
estimated 12,000–15,000 genes in
the Cyanophora genome are
cyanobacterial in origin [2].
Intriguingly, >90% of the putative
cyanobacterial proteins in the
Cyanophora dataset (12 of 132) are
predicted to have plastid functions.
These numbers provide an
interesting contrast to those
obtained for Arabidopsis, where
4,500 cyanobacterial proteins
were inferred, fewer than 50% of
which were predicted to be
plastid-localized [3]. What are we
to make of these differences?

First, the estimates obtained for
Cyanophora are based on partial
genomic data and will need to be
revisited when a complete genome
sequence becomes available,
and with organelle targeting
prediction algorithms trained
on experimentally verified
Cyanophora proteins. The recent
funding of a project by the National
Science Foundation to generate
a complete genome sequence for
Cyanophora (D. Bhattacharya,
personal communication)
promises to provide these data.
Second, Reyes-Prieto et al. [2] note
that, at the time of the Martin et al.
Arabidopsis study [3], only one
other eukaryotic genome (that of
the budding yeast Saccharomyces
cerevisiae) was available for
comparison, a situation that has
improved dramatically in recent
years. It is possible that differences
in datasets and search strategies
are at least partly responsible for
the variance in the estimated
proportions and cellular functions
of cyanobacterial proteins in
Arabidopsis and Cyanophora.

Methodological issues aside, an
important factor to consider when
comparing the Cyanophora and
Arabidopsis numbers is the huge
amount of time that has transpired
since glaucophytes and green
algae diverged from a common
ancestor. The apparent differences
in the abundance and functional
diversity of cyanobacterial genes in
the two genomes could in part be
the result of ‘amplification’ of
cyanobacteria-derived genes
during the evolution of plants via
gene and genome duplication.
Both processes have figured
prominently in the evolution of
plant genomes [10,17], and while
there is still much to learn about the
structure of glaucophyte genomes,
very few genes in the Cyanophora
EST dataset appear to belong to
multigene families [2].

Although genome duplication
would not increase the percentage
of cyanobacterial genes in the
Arabidopsis genome, it could
certainly increase the total number
of cyanobacterial homologs
available for functional
‘reassignment’. Once a core set of
ancient cyanobacterial genes has
been identified in red, green and
glaucophyte algae, it should be
possible to determine the extent to
which gene and genome
duplication has played a role in the
functional diversification of
cyanobacterial proteins by
comparing land plant genomes to
those of their closest algal
relatives, the charophytes [11].
Indeed, a recent comparison of the
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Quality Control: Linking
Retrotranslocation and
Degradation

Misfolded proteins in the ER require the p97 AAA ATPase for dislocation
across the membrane prior to degradation by the cytosolic proteasome.
The mechanism by which dislocated proteins are delivered to the
proteasome from p97 is unclear, but recent studies suggest an
important regulatory role for the protein ataxin-3.

Colin J. Stirling1

and J. Michael Lord2

The fatal neurodegenerative
Machado-Joseph disease, also
known as spinocerebellar ataxia
type 3, is caused by mutations of
the polyglutamine-containing
protein ataxin-3 [1]. The
biochemical properties of
ataxin-3 are well known, but
its physiological role has been
elusive. Two recent studies [2,3]
now implicate ataxin-3 in the
process known as endoplasmic-
reticulum-associated degradation

(ERAD), suggesting a link
between endoplasmic
reticulum (ER) stress and the
neuropathology associated
with disease.

After targeting to the ER,
proteins are screened by a quality
control system to prevent
misfolded forms from progressing
through the secretory pathway.
Rather than accumulating within
the cell, these aberrant proteins
are disposed of by ERAD. This
requires the dislocation of such
proteins across the ER membrane
and their subsequent degradation
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Arabidopsis and rice genomes [18]
suggests that lineage-specific
tinkering with the composition of
the plastid proteome can occur
even over short evolutionary
timescales.

In the mean-time, multiple algal
genome sequences are now
publicly available — for example,
those of the green algae
Chlamydomonas and
Ostreococcus (http://genome.
jgi-psf.org/euk_cur1.html) and the
red alga Cyanidioschyzon (http://
merolae.biol.s.u-tokyo.ac.jp) —
and it is likely that ten or more plant
and algal nuclear genome
sequences will be available for
even more thorough and
systematic analyses within the next
few years. An increasing number
of genomes from ‘secondary’
plastid-containing algae such as
diatoms, cryptophytes and
chlorarachniophytes will also be
completely sequenced (http://
www.jgi.doe.gov/). These
organisms acquired their plastids
through the engulfment of red or
green algal endosymbionts [19]
and the molecular dynamics
accompanying the process
of secondary endosymbiosis, in
which gene transfers between
evolutionarily distinct nuclear
genomes are also a possibility,
adds another layer of complexity to
an already complicated picture
[20]. Overall, it is sobering to
consider how little we know about
the nuts and bolts of
endosymbiosis and the full scope
of its role in the diversification of
eukaryotic cells.
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